Künstliche Intelligenz im Unternehmen nutzen: 5 Schritte

123
Künstliche Intelligenz im Unternehmen nutzen
© sujins – pixabay.com

Künstliche Intelligenz (KI) im Unternehmen hat sich längst vom Hype zum Wettbewerbstreiber entwickelt. Aufgrund des hohen Wertschöpfungspotenzials forcieren immer mehr Unternehmen die Implementierung von KI-basierten Systemen. Doch die passende Lösung zu finden, ist gar nicht so einfach. Daher sollten Unternehmen sich die ersten Schritte gut überlegen, um den gewünschten Erfolg zu erzielen.

Dieser Artikel gibt einen kurzen Überblick, welche Schritte bei einem KI-Projekt bedacht werden sollten:

1. Identifizierung eines konkreten Anwendungsfalles

Aufgrund der zahlreichen Hersteller, Konzepte und Herangehensweisen ist es oft schwierig, den richtigen Einstiegspunkt für die Einführung einer KI-Lösung zu finden.

Bevor man in das Projekt startet, ist es notwendig, die eigenen Prozesse kritisch zu betrachten, um konkrete Pain Points zu identifizieren. Erfahrungsgemäß finden sich so zahlreiche Einstiegspunkte. Um sich nicht zu verzetteln, sollte der Fokus aber zunächst jedoch auf einem ganz konkreten Use Case in einer Fachabteilung liegen.

2. Definition der Erfolgs- und ROI-Kriterien

Ist der geeignete Use Case als Einstiegspunkt gefunden, geht es im nächsten Schritt darum, einige konkrete Erfolgskriterien festzulegen. Diese betreffen vor allem die Anforderungen an die Lösung, die benötigten Datenquellen, die Datenqualität sowie die Erfolgsmessung.

  • Business Needs (Geschäftsanforderungen): Was soll mit der Einführung der Lösung erreicht werden?
  • Datenquellen und Datenqualität: Welche Daten und Datenquellen gilt es zu berücksichtigen, um die vorher festgelegten Anforderungen bzw. Ziele zu erreichen?
  • Erfolgsmessung: Wie lässt sich der Erfolg der Lösung messen? Definition aussagekräftiger KPIs (Key Performance Indicators).

3. Testen mit eigenen Unternehmensdaten

Ein Proof of Concept (PoC) gilt als wichtiger Meilenstein, um zu überprüfen, ob die ausgewählte Lösung auch den Anforderungen entspricht. Es empfiehlt sich, einen Test mit den eigenen Daten durchzuführen, um etwaige Probleme frühzeitig zu erkennen.

Zudem lassen sich nach erfolgreicher Teststellung sämtliche Einstellungen nahtlos für den Echtbetrieb übernehmen. Dabei sollte auch die Datenqualität im Fokus sein. Nur eine gute Datenbasis mit wenig Dubletten, Fehlern etc. stellt eine ideale Basis für die Extraktion von guten Ergebnissen dar (garbage-in – garbage-out Prinzip).

EXTRA: Künstliche Intelligenz: Vor- und Nachteile von Robotern am Arbeitsplatz

4. Die AnwenderInnen mit einbeziehen

Je früher die MitarbeiterInnen in den Prozess eingebunden werden, desto erfolgreicher ist er. Sie kennen ihre Abläufe und können am besten beurteilen, ob noch Optimierungsbedarf besteht.

Ebenso liefern sie wertvollen Input, besonders wenn es um das Trainieren der KI-Lösung geht. Sie testen die Lösungen und geben aktiv Feedback. Nur so lernt die KI stetig hinzu, erweitert ihr Wissen, liefert genauere Ergebnisse und unterstützt in weiterer Folge bei der täglichen Arbeit.

5. Validierung des ROI

Nach erfolgreichem Praxistest erfolgt die Überprüfung der vorab definierten Erfolgskriterien.

Die Einführung einer KI-Lösung für einen konkreten Use Case bringt oft „den Stein ins Rollen“ und andere Fachabteilungen erkennen den Mehrwert.

Künstliche Intelligenz im Unternehmen eröffnen umfangreiche Möglichkeiten, die einerseits die strategische und operative Position positiv beeinflussen und andererseits Vorteile im Wettbewerb generieren kann. Das richtige System gut überlegt und intelligent im Unternehmen zu implementieren ist definitiv ein echter Game Changer.

Daniel Fallmann
Daniel Fallmann beschäftigt sich seit frühester Jugend mit den Themen Künstliche Intelligenz, Machine Learning und Deep Learning. Er studierte Informatik an der Johannes Kepler Universität Linz und gründete im Jahr 2005 im Alter von 23 Jahren Mindbreeze GmbH. Daniel Fallmann leitet das Unternehmen seither als CEO. Mindbreeze mit Headquartern in Linz, Österreich sowie Chicago, USA zählt heute zu den führenden internationalen Anbietern im Bereich angewandte künstliche Intelligenz und Wissensmanagement.

Kommentiere den Artikel

Bitte gib deinen Kommentar ein!
Bitte gib hier deinen Namen ein

Der Artikel hat dir gefallen? Gib uns einen Kaffee aus!